Two-Stage Multi-Task Representation Learning for Synthetic Aperture Radar (SAR) Target Images Classification

نویسندگان

  • Xinzheng Zhang
  • Yijian Wang
  • Zhiying Tan
  • Dong Li
  • Shujun Liu
  • Tao Wang
  • Yongming Li
چکیده

In this paper, we propose a two-stage multi-task learning representation method for the classification of synthetic aperture radar (SAR) target images. The first stage of the proposed approach uses multi-features joint sparse representation learning, modeled as a ℓ 2 , 1 -norm regularized multi-task sparse learning problem, to find an effective subset of training samples. Then, a new dictionary is constructed based on the training subset. The second stage of the method is to perform target images classification based on the new dictionary, utilizing multi-task collaborative representation. The proposed algorithm not only exploits the discrimination ability of multiple features but also greatly reduces the interference of atoms that are irrelevant to the test sample, thus effectively improving classification performance. Conducted with the Moving and Stationary Target Acquisition and Recognition (MSTAR) public SAR database, experimental results show that the proposed approach is effective and superior to many state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies

Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution

Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...

متن کامل

Microwave Imaging Using SAR

Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...

متن کامل

SAR Target Recognition Using Improved Fuzzy Neural Network

Target recognition in high-resolution synthetic aperture radar (SAR) images is a challenging task, because SAR images have higher ambiguity for different target, which will reduce the correct recognition rate. This paper presents an improved SAR recognition algorithm based on fuzzy neural network (FNN), which deals with the ambiguity SAR target recognition very well. This improved FNN system im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017